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Abstract 

The two-point sealing approach is introduced by the assumption that the thermodynamic po- 
tentials are generalized homogeneous functions with respect to the reduced temperature variable 
and to the fields conjugated to the order parameters, however, the singularities are related to the 
stability points in contrast to the conventional sealing where the fixed point is identified with the 
phase transition temperature. 

The extended scaling theory is illustrated in the ease of the pyroeleotrie function behaviour 
in the neighbourhood of ferro-paraeleetric phase transitions. The method is successfully applied 
to the description of the melting and surface melting phenomena. Applications to liquid crystals 
and mixtures of solvents can be predicted as fruitful but they still remain open for considerations. 
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�9 Inti'oduction 

The scaling hypothesis is based on the assumption that the critical parts of 
thermodynamic functions are generalized homogeneous functions with respect 
to the reduced temperature variable whose value is scaled to the point in which 
the thermodynamic functions become singular and to the fields conjugated to 
the corresponding order parameters. 

The conventional approach assumes that the singularities are connected with 
the critical temperature at which the phase transition occurs. The idea intui- 
tively introduced [1-21 was confirmed by the theoretical considerations within 
the renormalization group theory and widely applied to various problems of 
phase transitions [2-4]. 

The scaling hypothesis turned out a very fruitful method for numerous inves- 
tigations not only for the phase transitions but for other aspects of the thermo- 
dynamics. Sometimes, it is called the fourth thermodynamical law. The idea 
was developed for different generalizations while its background is well estab- 
lished. 

The conventional scaling approach describes in fact the continuous phase 
transitions although the idea is extended to the case of discontinuous order pa- 
rameter behaviours at the phase transition point. One of the ways to this purpose 

0368--4466195/$ 4.00 

�9 1995 Akad~miai Kiad6, Budapest 
John Wiley & Sons, Limited 

Chichester 
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is the so-called two-point scaling model which is based on the non-conventional 
predictions which allow us to take into account the intuitively evident features 
of thermodynamically inhomogeneous samples. 

The two-point scaling approach seems a simple and natural extention of the 
scaling theory. It is formulated by the assumption that the thermodynamic po- 
tential functions are generalized homogeneous functions with respect to the re- 
duced temperature variable and fields conjugated to the order parameters. Now, 
however, the singularities are related to the stability conditions. In this case we 
can see that the fixed points are related to the stability points of a considered 
phase, so that the scale of the reduced variables is different for different phases. 
The phase transition temperature is then determined by the natural conditions of 
the equality of the thermodynamical potentials and belongs to the phase coexis- 
tence interval defined by the stability points. 

The extended form of the scaling hypothesis was originally introduced in or- 
der to describe the systems with fluctuations which make a system thermody- 
namically inhomogeneous [5--6]. Next, the two-point scaling construction was 
applied to the systems with restricted dimensions where the notion of the phase 
coexistence region plays an essential role. The surface of a sample leads then to 
the temperature interval which vanishes when the sample becomes infinite [7]. 

Recently, the discussed approach is suggested to be applied for crystals in or- 
der to describe their thermodynamic behaviour in the case of melting and pre- 
melting phenomena [8]. The present contribution brings also further 
considerations concerning the surface melting description. 

Applications to liquid crystals and mixtures of solvents can be predicted as 
fruitful but they still remain open for considerations. 

Two-point scaling construction 

The extended scaling hypothesis is based on the assumption that the thermo- 
dynamic potentials are generalized homogeneous functions with respect to their 
thermodynamic variables, i.e. the reduced temperature variables Ss and fields h 
corresponding to the order parameters ms.  

The condition which is added in order to extend the scaling hypothesis can 
be formulated as the stability condition satisfied by the considered thermody- 
namic potential. 

In the generalized formulation of the two-point scaling approach we consider 
a system which can appear in n phases confined by the stability points Ts~, 
v~(1, n), respectively. The phase v is then described by means of the thermo- 
dynamic functions 

G~(cv, h, my) = G(e, h, m0 (1) 

for which the equations of state read 

6G,,(~,,, h, m~) = 0 (2) 
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while the order parameter m~ determining the phase v is one of n solutions for 
5G=0. It is simultaneously given by the thermodynamic relation 

m~ = -  OG~ (3) 
Oh 

Next, the stability condition is of its usual form 

/i2G~(%, h, m0 = 0 (4) 

Assuming that, G~ is a homogeneous function with respect to e~, h, m~ we 
obtain as the result, consequent to the homogeneity assumption, that the equa- 
tion of state (2), the order parameter (3), as well as the stability condition (4) 
are also homogeneous functions of the considered variables. 

The homogeneity relation satisfied by G~(cv, h, m0 can be expressed as 

(5) 

for an arbitrary 7~ and three indices, av, b~, c~ non vanishing simultaneously. 
T h u s ,  

8G(sv, h, m0 = Z.c'-lfG(~."~, ~.~h, 7~'m~) (6) 

and 

with 

52G(sv, h, m0 = k~'-152G(k'*e~, ~,bvh, 7~C'm~) (7) 

m,,(e,,, h) = L~'-1(L"*e,,, ),,~'h) 

where c,,+b,,= 1. Substituting Z.=m-,Y*" we obtain 

(8) 

and 

Uc------- ;, m---~, I = 0  (9) 

m~-2~v~ 6(m~:~ h ) �9 tn~y/o------ S, I = 0 

hence, for h=O, the homogeneity properties lead to the result 

(lo) 

m,, = ~/~s~ ~/'~ (11) 
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and 

= ~ (12) 

where ct and c2 are the solutions of the equations 5G(c~, 0, 1) =0 and 
52G(c2, 0, 1)=0, respectively. In general, c~c2, the relation (12) is then satis- 
fied only for the scaling temperature T.=T,, where T~ denotes the stability 
temperature for the phase v. In this way, we derived that the thermodynamic po- 
tential is a homogeneous function with respect to s= I T-T, IIT.; it really is, and 
then and only then if the scaling temperature T.= T,~ denotes the stability tem- 
perature for the phase v. 

Taking into account the above considerations we can see that the scaling 
point can be equal to the phase transition point Tr only in the case when Tin= Tc 
which is satisfied for the conditions of the conventional scaling approach. In 
this sense we can speak of the present construction as an extention of the con- 
ventional scaling theory. 

The case Tc~:T~̀ " implied that G '̀,~:G,,,, in general, but the condition 

h) = Gr (ei,(To), h) (13) 

determines the phase transition temperature between the phases v and v' in 
every case. From the physical point of view the assumption (13) is natural and 
it reflects the fundamental property of thermodynamic potential. Within the 
scaling approach we can derive that 

" ~ 1  l/~" 0)r T~-- T"'~ 1/'' (14) G`'(1,0) =0"'(1' !,, Zv, J 

for h=0.  In particular case when a,,=a`',=a we obtain 

T~ = (1 + g')T,z/ 1 + ~ g (15) 

for g = G,2(1, 0)/G,l(1, 0) and Ta>T,i. The phase transition temperature T~ be- 
longs to the interval (T,I,T.2). In the case when T,I--- T,2 we obtain T,I=Tc-T,2 
which corresponds to the phase transition of the second order where the order 
parameter is continuous at the phase transition point To. This result obtained 
within the two-point scaling construction reduces the present construction to its 
homologous case derived from the conventional scaling theory. 

Order parameter shape coefficient 

The basic thermodynamic functions and parameters can be now discussed in 
the light of the considered construction. The most typical quantities are the spe- 
cific heat, the order parameter, the generalized susceptibility and the correla- 
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tions whose behaviour is tightly connected with the susceptibility shape and the 
stability points. 

The illustrative picture for the temperature dependence of the specific heat 
and the magnetic susceptibility is presented in Fig. 1 and Fig. 2, respectively. 
One of the curves corresponds to the conventional scaling which shows its typi- 
cal and well accepted result that the considered quantities are singular at Tr and 
the specific heat does not appear in the phase above To. The second curve rep- 
resents the typical result of two-point scaling which predicts maximum of the 
specific heat as well as the susceptibility at T~. The decrease of the specific heat 
above To is also expected but it is still appearing in contrast to the conventional 
description. Comparing these characteristic curves with experimental data rep- 
resentative for almost all the systems [e.g. 9-10] we find that the agreement be- 
tween theory and experiment is favourable for the extended form of the scaling 
hypothesis. We can also interpret the measurements as still not sufficiently per- 
fect but, on the other hand, the specific heat non appearing in a wide interval 
of temperature does not seem physically reasonable. 

A similar situation can be analysed for the order parameter behaviour. Its 
typical character can be reflected by means of the order parameter shape coef- 
ficient whose temperature dependence is more evident and convincing for the 
shape of the order parameter close to Tr The order parameter shape coefficient 
is introduced as 

h) 1 [ Z (16) 
and it can be measured independently way from the measurements of the order 
parameter. In particular, the coefficient 3.(~,1, h) is very useful in the case of fer- 
roelectrics and then it is identified with the pyroelectric function. On Fig. 3 we 
show its temperature dependence related to the order parameter shape. We can 
see that the characteristics of the results given by the considered forms of the 
scaling theory are of the same type as for the specific heat behaviour. A com- 
pari.son of the results predicted by the two-point scaling procedure with the ex- 
perimental points seems to suggest the assumption made already for the 
extended scaling construction (the illustrative results are fitted for ferroelectric 
Si Sb samples [11-12]. Thus, the assumption is confirmed in self-consistent 
way. 

One of interesting applications of the shape coefficient analysis is connected 
with the prediction of a special type of phase transitions. Namely, we can consider 
the continuous phase transition in the sense of the order parameter behaviour, but 
the diffuse phase transitions - in the sense of the coexistence temperature interval. 

Application to ferroelectrics 

The presented method is particularly convenient in the case of the phase 
transition description in ferroelectrics when the observations are performed by 
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Fig. 1 Specific heat bchaviour corresponding to the conventional scaling (continuous curve) 
and to the two-point scaring (dashed curve) compared with experimental points [9] 
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Fig. 2 Magnetic susceptibility behsviour corresponding to the convcntlona! scaring (continu- 

ous curve) and to the two-point scaling (dashed curve) compared with experimental 
points [10] 
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Fig. 3 Temperature dependence of the order parameter shape coefficient corresponding to 

the order parameter and described by the conventional sealing (continuous curve) as 
well as by the two-point sealing (dashed curve) compared with experimental data for 
the spontaneous polarization [I 1-121 

means of the pyroelectric function measurements. From the experimental point 
of view the pyroelectric coefficient in ferroelectrics is related to the de dis- 
charge current from a sample of a known electrode area subjected to a con- 
trolled rate of the change of temperature [11]. The measurement results are 
determined then by the absolute value of the polarization derivative with respect 
to the reduced temperature (16). 

It is worth-while stressing that the pyroelectric function allows us to deter- 
mine the tail of the polarization with the high precision. For this reason the ap- 
proach based on the pyroeleetric coefficient measurements is fruitful for the 
analysis of the diffuse phase transition effects. 

We can see now that the pyroelectric function has interesting properties for 
its discussion within the two-point scaling approach describing the behaviour of 
ferroelectrics. Namely, the temperature dependence of the pyroelectric function 
reflects directly the polarization behaviour which is given by the same coeffi- 
cient my(l, 0), the same exponents p,,=(1-b,,)/a,, (c.f. (8)) as well as the refer- 
ence temperatures T,,. Moreover, taking into account that the maximum of the 
pyroelectric function occurs at To, we obtain some relations between the pa- 
rameters characterizing the considered sample. In this case the two point scal- 
ing approach allows us to compare the experimental behaviour of the 
pyroelectric function and the spontaneous polarization derived from another 
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method and to confirm that the pyroelectric function can be considered in fact 
as the polarization derivative. First of all, however, we can see that the py- 
roelectric function (16) on Fig. 3 reflects its experimental shape. It seems to us 
that this fact evidently confirms the intuitively introduced hypothesis, 

Application to  su r face  mel t ing  

The present construction was also applied to the description of the coexis- 
tence conditions of the solid-liquid system with an intermediate phase which is 
observed as a solid-like or liquid-like layer in the surface melting effect. This 
description has required the extension of the presented approach to the case of 
thre~-phase coexistence. The construction is discussed in connection with the 
generalized compressibility and the specific heat behaviour [8]. 

The standard methods show that the dependence between the free energies 
for the solid and liquid phase in the stability interval is an almost linear function 
of temperature related to the latent heat L ,  for melting per unit volume. We can 
write [13-14] 

(17) 

o r  

hence 

= - G , ( T m ) )  (19) 

On the other hand, the latent heat can be expressed by means of the thermody- 
namic potential when the scaling procedure is taken into account. We obtain [8] 

aTm=(.~.L~ 1 r,,,/,-,(Tm))G.(1, 0 ) - / ~  Et'/'-'(Tm))GI(1, 0) (20) 

while the jump of the specific heat is then given by 

ACmTm l _ a 2 (_T_~2 ~, l/,,_2 ( Tm) 3G. (1, O ) _ I._~t2 s l~2( Tm) l Ga(1, O ) (21) 

where ~ and T, stand for the stability temperatures of the liquid and solid 
phases, respectively. 

The Eqs (20) and (21) allow us to estimate G,(1, 0) and Gl(1, 0) by means 
of the physical characteristics of a considered sample, namely, a jump of the 
specific heat ACre and the latent heat L~. Substituting the solutions for (7,(1, 0) 
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and G~(1, 0) into (20) we find the equation for Tm which can serve to fit also T~ 
and T~ or the exponent a when the melting temperature is assumed to be the 
third characteristic of a sample. 

One of the properties seems to be of particular interest, namely, the fact that 
the phase transition temperature T,m between the surface melting phase and the 
melting phase turns out always higher than the bulk melting temperature Tm ob- 
tained in the case when the surface effects are not considered. The problem is 
not so simple, but its nature is rather clear and due to the size effect which ap- 
pears in the systems with restricted dimensions. The discussion concerning the 
global character of the melting point allows us to conclude that the surface in- 
fluences the melting by shifting the bulk melting temperature towards lower 
temperatures. The temperature 7",,, results then from a competition between the 
size, or surface, and the proximity effects. This fact can be predicted to be veri- 
fied empirically when we take into account that the different shift of the phase 
transition temperature with respect to the crystallographic orientation is ex- 
pected. The compensation does not occur then for all the orientations simulta- 
neously. In consequence, the empirical melting temperature should depend on 
the geometry of experiment and the method used for the measurements. 

On Fig. 4 we can see the established behaviour of the order parameter re- 
lated to the density variable for the solid and liquid phases as well as the pre- 

A 
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i 

9 (crystal) t ~ -  
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Tsl Tins :mTsz T ~" 
Tm 

Fig@. 4 The behaviour of density in the neighbourhood of phase transition. The point ~ cor- 
responds to the transition with a jump of the density from Pc to Pl. The dashed curve 
corresponds to the surface melting phase with the transition at T=, and Tm points 
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dicted shape inside the intermediate phase where the fragment of the trajectory 
between the pre-melting and the melting points is only realised. We can also il- 
lustrate the physical interpretation for the change of the phase transition charac- 
ter. The curve with a jump at T,, representing the first order transition is 
replaced by the curves which are tangent at Tom and/or T,=. In this case the 
phase transition at the surface becomes the transition of the second type. This 
property is expected in experiments [13]. 

Conclusions 

The generalized scaling hypothesis discussed during the present lecture is 
grounded on the fact that the singularity points of thermodynamic functions do 
not agree with the physical points of phase transitions but they coincide with the 
stability points. Only in some particular cases the stability and phase transition 
points appear at the same point and then the two-point scaling reduces to the 
conventional scaling theory. 

The presented approach is controversial from the point of view of traditional 
formulations of the thermodynamics but it is verified now by numerous appli- 
cations in practical studies. Therefore, it seems to me that this hypothesis 
should be open for further discussion. 

From the point of view of the reality of a physical system the objects consid- 
ered in statistical physics cannot be free of deviations from the state of homoge- 
neity. The spatial inhomogeneities in any real system are its immanent feature. 
They are, of course, of different character. 

The inhomogeneities of a system of static character are connected with geo- 
metrical structure which is determined by the surfaces, structural defects and 
dislocations. A physical structure can be another cause of static inhomogenei- 
ties. It is also worth-while mentioning here, for instance, the impurities leading 
to a stoichiometric disorder in alloys and local deviations of interaction con- 
stants. The static inhomogeneities can be caused by external factors, like ap- 
plied fields or a temperature gradient. The spatial distribution of static 
inhomogeneities does not depend on time or it changes very slowly with time in 
comparison with the time of the measurements. This can be met in the case of 
the migration process for dislocations or diffusion of impurities. 

The presented construction is also applicable to the case of dynamic scaling. 
The inhomogeneities of dynamic character depend on the geometrical stability 
of a system. Any physical system is inhomogeneous due to the permanent mo- 
tion of particles in a fluid as well as to thermal oscillations of atoms around 
their equilibrium positions or other collective excitations in solids. First of all, 
local stochastic fluctuations are a source of dynamic inhomogeneities. A local 
fluctuation is comprehensible as a deviation of a certain thermodynamic vari- 
able from its mean value in certain volume element of a system with the spatial 
distribution which is of dynamical character with time characteristics given by 
the fluctuation decay and its growth parameters. In general, the characteristics 

I. 7"hcrmal AnaL, 45, 199,5 



WOJTCZAK: PHASE TRANSITIONS 649 

of local fluctuations depend on intensive variables like temperature, pressure, 
and external fields. Particularly, the temperature dependence is intuitively un- 
derstandable in the case of temperature phase transitions when the local fluctua- 
tions play an essential role in the vicinity of phase transition temperature. 

In the light of the above considerations any real system is spatially inhomo- 
geneous due to local fluctuations. The fluctuations grow and decay in time and 
instantaneous picture of irthomogeneities changes but the system remains inces- 
santly inhomogeneous although the average local fluctuation disappears; how- 
ever; the non-zero mean square local fluctuation can be determined. Thus, the 
thermodynamic quantities which are non-linear, at least quadratic functions of 
fluctuating parameters, depend on dynamic inhomogeneities due to local fluc- 
tuations. This dependence can be observed for an arbitrarily long time, inde- 
pendently of the fact that the average fluctuation is equal to zero. A confh'mation 
of such a dependence can be found in the observations of critical opalescence phe- 
nomenon as well as in the case of surface melting studies in connection with the 
solid-like and liquid-like layers and the transition between them. Other examples 
of the experimental verification refer to magnetic, electric, structural and size 
dependent effects in the neighbourhood of phase transitions. 

The presented approach does not remain in contrast to the conventional theo- 
ries which discuss the phases and phase transitions of surfaces and interfaces in 
various aspects. One of them is to emphasize the symmetry characterisation of 
surfaces and interfaces [15], another one concerns the roughening transitions 
[16] which are competitive to the melting and particularly surface melting phe- 
nomena. The interface between the ordered and the disordered phases becomes 
delocalised as in the melting transition. In this case critical surface phenomena 
can be described by the critical exponents but their definition requires to con- 
sider systems which undergo a first order bulk transition whose behaviour is 
convenient to be described in terms of the scaling theory [17]. A rigorous the- 
ory of finite-size scaling at the first order phase transitions is then formulated 
[ 18]. The starting point comes then from the obvious observation that the num- 
ber of stable phases has a local maximum at the transition point, which means 
no singularities in it. The relation between the singular part of the energy and 
the singularity of the correlation length [19] in the context of the algebra for 
fluctuation operators [20] leads to an additional argument that the fixed point 
following from the identity between the singular points of energy and correla- 
tion is delated in general to the stability temperature. This fact remains in full 
analogy with the main feature of the present construction. 

The picture of inhomogeneous system brings a complementary description 
of the background for the hypothesis of two-point scaling. However, inde- 
pendently of these additional arguments, the reported formal remarks and, first 
of all, the interesting, empirically regular convergences between the two-point 
scaling conclusions and the behaviour of physical objects can be really stimulat- 
ing for a deeper reflection concerning the presented considerations. 
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Zusammenfassung - -  Unter der Annahme, dab die thermodynamischen Potentiale verallgemei- 
nerte homogene Funktionen im Bezug auf die reduzierte Tcmperaturvariable und die zu den 
Ordnungsparametem gch6renden Felder sind, wurde die Zwei-Punkte-Scaling-N~herung einge- 
fiihrt, Besonderheiten werdcn im Gegensatz zu der herk6mmlichen Sealing-Methode, we der 
Fixpunkt dutch die Phasenumwandlungstemperatur festgelegt wird, den Stabilitfitspunkten 
zugeordnet. 
Die erweiterte Scaling-Thcorie wird im Falle des Verhaltens der pyroelektrischen Funktion in 
der Nachbarschaft der ferro-paraelektrischen Phasenumwandlung illustricrt. Die Methode wird 
erfolgreich zur Beschreibung yon Schmelz- und Oberflfichenschmelzerscheinungen angewendct. 
Anwendungen bei Flfssigkeitskristallen und LSsungsgemischen k6nnen als fruchtbar vorausge- 
sagt werden, bediirfen jedoch noch wciterer Bctrachtungen. 
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